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Abstract.  10 

Analysis of karst spring recession hydrographs is essential for determining hydraulic parameters, geometric characteristics and 11 

transfer mechanisms that describe the dynamic nature of karst aquifer systems. The extraction and separation of different fast 12 

and slow flow components constituting karst spring recession hydrograph typically involve manual and subjective procedures. 13 

This subjectivity introduces bias, while manual procedures can introduce errors to the derived parameters representing the 14 

system. To provide an alternative recession extraction procedure that is automated, fully objective and easy to apply, we 15 

modified traditional streamflow extraction methods to identify components relevant for karst spring recession analysis. 16 

Mangin’s karst-specific recession analysis model was fitted to individual extracted recession segments to determine matrix 17 

and conduit recession parameters. We introduced different parameters optimisation approaches of the Mangin’s model to 18 

increase degree of freedom thereby allowing for more parameters interaction. The modified recession extraction and 19 

parameters optimisation approaches were tested on 3 karst springs in different climate conditions. The results show that the 20 

modified extraction methods are capable of distinguishing different recession components and derived parameters reasonably 21 

represent the analysed karst systems. We recorded an average KGE >0.7 among all recession events simulated by recession 22 

parameters derived from all combinations of recession extraction methods and parameters optimisation approaches. While 23 

there are variability among parameters estimated by different combinations of extraction methods and optimisation approaches, 24 

we find even much higher variability among individual recession events. We provide suggestions to reduce the uncertainty 25 

among individual recession events and to create a more robust analysis by using multiple pairs of recession extraction method 26 

and parameters optimisation approach. 27 

1 Introduction 28 

Groundwater from karst aquifers are essential water sources globally (Stevanović 2018; Goldscheider et al. 2020). Karst 29 

aquifers are characterised by high degree of heterogeneity and complex flow dynamics resulting from the interplay of conduit 30 

and matrix drainage systems (Kiraly 2003; Goldscheider and Drew 2007). Groundwater flow is rapid in the highly-conductive 31 
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conduit system whereas it is several order of magnitude slower in the less-conductive matrix system (Goldscheider 2015). 32 

While both systems have significant storage capacities, groundwater residence time is longer in the matrix than the conduit 33 

system (Kovács et al. 2005). 34 

 35 

Several methods including detailed site-specific speleological investigation (Ford and Williams 2007), tracer tests 36 

(Goldscheider and Drew 2007; Goldscheider and Neukum 2010), hydrograph analysis (Kovács et al. 2005; Fiorillo 2014) and 37 

model ensembles (Fandel et al. 2020) are used to characterize groundwater flow dynamics in karst systems. Aside from 38 

hydrograph analysis which usually requires only spring discharge time series data, other methods are either expensive to apply, 39 

time consuming or require more input, thus making time series a commonly applied method for karst aquifer flow analyses 40 

and modelling (Ford and Williams 2007).  41 

 42 

Quantitative time series analysis provides a lumped attributes of an entire karst aquifer system that are rather difficult to directly 43 

measure (Kovács et al. 2005). Karst spring recession analysis still remains a vital quantitative time series analysis tool for 44 

estimating aquifer parameters and geometric properties (Fiorillo 2011). Discharge from karst springs reflects the complex 45 

interplay of conduit and matrix systems, and provides insight about the characteristics of the aquifer which sustains the spring 46 

(Kovács et al. 2005; Fiorillo 2014). This also provide essential information for flow prediction as the shape of spring 47 

hydrograph reflects variable aquifer responses to different recharge pathways (Ford and Williams 2007). Since the shape of 48 

the spring hydrograph describe in an integrated manner how different aquifer storages and processes control the spring flow 49 

(Jeannin and Sauter 1998; WMO 2008a), analysing individual recession limbs of spring hydrograph therefore offers extensive 50 

understanding into the structural, storage and behavioral dynamics of the karst system’s drainage (Bonacci 1993).  51 

 52 

Numerous studies have employed recession analyses of karst spring hydrograph to characterise karst aquifers, evaluate aquifer 53 

properties, manage groundwater resources, predict low flow and estimate baseflow parameters (Padilla et al. 1994a; Dewandel 54 

et al. 2003; Kovács et al. 2005; Fiorillo 2014). Derived or estimated recession coefficients are also important parameters in 55 

karst models for simulating rainfall-discharge (Fleury et al. 2007; Mazzilli et al. 2019) and other process-based modelling 56 

(Hartmann et al. 2013, 2014).  57 

 58 

Unlike porous media, karst systems cannot be represented by one single storage-discharge function (Ford and Williams 2007). 59 

They comprise of multiple subsystems of interconnected conduit and matrix reservoirs, each with their own storage-discharge 60 

characteristics (Jeannin and Sauter 1998). Recession analysis models specifically developed for karst spring analysis are thus 61 

comprised of two (Mangin 1975) or more (Fiorillo 2011; Xu et al. 2018) independent storage-discharge transfer functions to 62 

describe drainage characteristics of different reservoirs and simulate recession flows. Dewandel et al. (2003) provide general 63 
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overview and main characteristics of commonly used recession models and those specifically applied to karst systems. 64 

Separating the conduit (quickflow) and matrix (slowflow) components of karst spring recession curve is key in correctly 65 

applying and fitting the recession models. Extracting these components is done through a semi-logarithmic plot that usually 66 

reveals two or more segments. At least one of these segments, which is typically the last, represents linear reservoir drainage 67 

and it is attributed to the matrix component (Bonacci 1993; Ford and Williams 2007). However, this extraction approach is 68 

manually and subjectively applied resulting to imprecise and inconsistent estimations. The amount of time required to manually 69 

fit a straight line and identify the matrix component also makes it impractical to apply this approach to large number of 70 

hydrographs or multiple recession curves.  71 

 72 

While a handful of automated recession extraction routines have been developed for extracting streamflow recessions 73 

(Arciniega-Esparza et al. 2017), these  approaches, based on different statistical indices to detect less variable flow conditions 74 

are explicitly used to extract the baseflow recession. During baseflow, streamflow is supported by groundwater and storage 75 

reservoirs which provide a less variable flow condition. Contributions from runoff and other unregulated sources that produce 76 

high variable flow during quickflow recession are discarded by the extraction routine (Vogel and Kroll 1996; Brutsaert 2008). 77 

 78 

However, these recession extraction routines developed for streamflow could be adapted to extract conduit and matrix flow 79 

recession of karst springs. Since these routines are developed to identify baseflow (matrix) component of streamflow (karst 80 

spring flow) recessions and discard the quickflow (conduit) component, we can modify it to identify the quickflow as well 81 

rather than discarding them. But as these routines are based on different statistical indices for identifying the baseflow regime, 82 

they perform differently and could produce differing recession parameters (Stoelzle et al. 2013; Santos et al. 2019). 83 

 84 

The objective of this study is to develop and test a robust and objective approach to extract karst spring recession components 85 

as well as derive parameters associated with the different components of karst drainage systems. Therefore, in this study we: 86 

 87 

• Develop automated karst recession extraction methods that can identify conduit and matrix component of karst spring 88 

recession hydrograph by adapting and modifying different baseflow recession extraction routines for streamflow. 89 

 90 

• Estimate conduit and matrix drainages recession parameters of sample springs using the combination of different modified 91 

extraction methods and parameters optimisation approaches of karst recession model. 92 

 93 
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• Evaluate the performance of the different combinations of modified extraction procedures and karst recession model 94 

parameters optimisation approaches by comparing the ranges and distribution of recession parameters, efficiency measures 95 

and spring characterisations.  96 

 97 

For this study, the recession parameters are estimated by fitting the karst recession model to individual recession segments 98 

extracted by the extraction methods. Unlike master recession curve, analysis of individual recession segments allows to 99 

explicitly account for variability in the individual recession events resulting from different input (precipitation) and other initial 100 

conditions (WMO 2008b). 101 

2 Data and Methods 102 

To develop an automatic karst-specific recession extraction and analysis procedure that is objective and applicable to large 103 

hydrograph samples, we first explore the applicability of generic recession extraction procedures originally developed for non-104 

karst streamflow recessions (Vogel and Kroll 1992; Brutsaert 2008; Aksoy and Wittenberg 2011). Then we analyse karst 105 

recession parameters using  two-parallel drainage recession model was used to simulate recession curves (Mangin 1975). In 106 

the following subsections, we described the recession extraction and analysis model, parameters optimisation approaches, as 107 

well as the various adaptations and modifications implemented. For consistency, we use the terms ‘quick flow’ for the turbulent 108 

flow from highly conductive karst drainage pathways (synonymous with conduit and storm flow) and ‘slow flow’ for the 109 

laminar flow contribution from less conductive fissures and pores (synonymous with matrix, diffuse and base flow) (Atkinson 110 

1977; Larson and Mylroie 2018). 111 

2.1 Adapting streamflow methods to extract matrix and conduit recession components 112 

We adapt three different streamflow recession methods (Vogel and Kroll 1992; Brutsaert 2008; Aksoy and Wittenberg 2011) 113 

to extract matrix and conduit recession components (Table 1), herein called recession extraction methods (REMs). Vogel and 114 

Kroll (1992) developed an automated base flow recession extraction  routine for streamflow. A 3-day moving average is firstly 115 

apply to smoothing the hydrograph, and the decreasing segments of the 3-day moving average are selected as the recession 116 

hydrograph. Only segments with 10 or more consecutive days are recognised as recession candidates. To exclude surface and 117 

storm runoff influence at the beginning of recession, the first 30% of each recession segment is deleted. Additionally, the 118 

difference between two consecutive streamflow values must be ≤ 30% for the pairs to be accepted. All recession segments that 119 

satisfy these conditions are then accepted as base flow (non-influenced) recessions segment. 120 

 121 

In order to objectively determine streamflow recession that is derived purely from a dry or low flow period, Brutsaert (2008) 122 

introduced more strict recession extraction method. For streamflow Q, during time t, the Brutsaert method eliminates data 123 
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point with increased or zero values of dQ/dt, as well as points with abrupt dQ/dt values. To exclude data points that might be 124 

influenced by storm runoff, three data points after a positive or zero dQ/dt are removed; in majors events, an additional fourth 125 

data point is removed. While Brutsaert (2008) did not provide a description for a majors event, Stoelzle et al. (2013) applied 126 

the Brutsaert method in their study and defined major event as streamflow values exceeding 30% streamflow frequency. 127 

Therefore, our study uses this definition of major event from Stoelzlz et al. (2013). Furthermore, the Brutsaert method also 128 

excludes last two data points before a positive or zero dQ/dt and spurious data points with larger -dQ/dt values.  129 

 130 

Aksoy & Wittenberg (2011) extracted the baseflow component from daily streamflow hydrograph during recession by 131 

comparing the coefficient of variation (CV) of the recession segment. All days with decreasing or equal observed flowrate 132 

observations are considered as part of the recession curve. Subsequently, a non-linear reservoir model (Eq. 1) is iteratively 133 

fitted to the recession curve until the CV is ≤ 0.1. The CV is defined as the ratio of standard deviation between observed 134 

flowrates measurements (Qs) and calculated flowrate (Qcalc) to the mean of the observed flowrates as expressed by Eq. 2. 135 

Segment of the recession curve with the CV ≤ 0.1 is selected as the real baseflow recession, otherwise excluded. Only recession 136 

curves with 5-day periods or longer are considered. If the number of days becomes less than 5 during iterative curve fitting 137 

and CV ≤ 0.1 is not achieved, such recession event is discarded (Aksoy and Wittenberg 2011). 138 

 139 

 140 

𝐐𝐭 = 𝐐𝟎 [𝟏 +
(𝟏−𝐛)𝐐𝟎

𝟏−𝐛

𝐚𝐛
]

𝟏

𝐛−𝟏
    (1) 141 

 142 

 143 

𝐂𝐕 = √
𝐧𝟐

𝐧−𝟏

∑(𝐐−𝐐𝐜𝐚𝐥𝐜)𝟐

∑(𝐐)𝟐      (2) 144 

 145 

The three recession extraction approaches (Vogel and Kroll 1992; Brutsaert 2008; Aksoy and Wittenberg 2011) were 146 

specifically developed to extract streamflow recessions that are mainly from baseflow contribution. Thus, rule based and 147 

exclusion criteria specified by each method ensure that quick flow influences were eliminated from extracted recession 148 

segments. In karst systems concentrated rapid flow through the conduit networks constitutes the quick flow, while the 149 

contribution from slow-velocity drains through the matrix pores constitutes the slow flow (baseflow). The quick and slow flow 150 

represents flows from two different drainage structures and both contribute to karst spring recession (Fiorillo, 2014; Ford & 151 

Williams, 2007; Padilla et al., 1994). 152 

 153 
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Adapting streamflow methods for karst spring recession analysis requires both slow and fast flow components to model matrix 154 

and conduit spring discharges, so we (i) extract spring flow recession curve based on the specific method approach, (ii) attribute 155 

part of the recession curve that satisfies the specified method’s exclusion criteria as slow flow (matrix) component, and (iii) 156 

assign the remaining part that is excluded as quick flow (conduit) component. Table 1 provides an overview of the rule-based 157 

baseflow recession extraction methods and changes made in adapting them to include quickflow component of recession. 158 

 159 

Table 1: Criteria for recession extraction methods (REMs) 160 

     Extraction 

method 

General 

Criteria 

Filter Slow flow   

selection 

Adaptation for  

Quick flow 

selection 

  Vogel   Vogel and  

Kroll (1992) 

Decreasing 3-day 

 moving day 

average 

First 30% 

days 

𝑄𝑖 − 𝑄𝑖+1

𝑄𝑖+1

≤ 30% 

First 30% days, 

𝑄𝑖 − 𝑄𝑖+1

𝑄𝑖+1

≥ 30% 

  Brutsaert   Brutsaert (2008) 𝑑𝑄

𝑑𝑡
< 0 

First 3 or 4,  

and last 2 

days 

 First 3 or 4 days 

  Aksoy   Aksoy and  

Wittenberg 

(2011) 

𝑑𝑄

𝑑𝑡
≤ 0 

- CV ≤ 0.10 CV ≥ 0.10 

 161 

2.2 Karst recession analysis model 162 

After extraction, we apply Mangin's (1975) recession analysis model which has been widely used for estimating drainage 163 

characteristics and aquifer dynamics in fractured non-homogeneous media (Fleury et al. 2007; Liu et al. 2010; Xu et al. 2018; 164 

Schuler et al. 2020; Sivelle 2020).To analyse the extracted recessions, we use this method which considers a two-component 165 

recession curve by distinguishing between quick flow (mostly through karstic conduits) and slow flow (mostly through the 166 

fissure matrix of the carbonate rock) recessions (Figure 1). Mangin presented two equations: Eq.3 describes the linear storage-167 

discharge relationship from the saturated zone during slowflow condition represent by the Maillet (1905) equation. 168 

 169 

𝛟𝐭 = 𝐐𝐫𝟎
 𝐞−𝛂𝐭     (3) 170 

 171 
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where Qro is the baseflow contribution at the beginning of recession when t = 0, α is the recession coefficient with a unit of T-172 

1 and t is the lapsed time between discharge at any time t, Qt and initial discharge at t = 0, Q0; and Eq. 4 describes the non-173 

linear relationship during quickflow recession from the unsaturated zone. 174 

 175 

𝚿𝐭 = 𝐪𝟎
𝟏−𝛈𝐭

𝟏+𝛆𝐭
     (4) 176 

 177 

where q0 is the difference between Q0 and Qro, parameter η describes the infiltration rate through the unsaturated zone. The 178 

parameter is defined as 1/ti for the duration of quickflow recession between t = 0 and ti = 1/η. ε in T-1 unit describes the 179 

regulating capacity of the unsaturated zone during infiltration and characterises importance of concavity of quickflow recession 180 

(Padilla et al. 1994). The algebraic sum of Eq. 3 and 4 gives Eq. 5, which defines the discharge at time t during the recession 181 

period. 182 

 183 

𝑸𝒕 =  𝛟𝐭 + 𝚿𝐭 
    (5) 184 

 185 

Since ti is the point of intersection of slowflow and quickflow component of the recession curve and infiltration stopped when 186 

t > ti (t > 1/η), so the quickflow component ψt in Eq. 5 is essentially assumed to be zero at that point (ψt = 0) (Ford and Williams 187 

2007; Civita and Civita 2008). Therefore, the application of the Mangin’s model require, firstly fitting the slowflow component 188 

ϕt, to the slowflow segment of recession curve using Eq. 3 to determine the recession coefficient α. Afterwards, Eq. 5 is then 189 

fitted to determine the η and ε parameters of the quickflow segment. However, the accuracies of Qro, ti and the linear 190 

representativeness of the slowflow component of the recession curve is critical for the reliable estimation of recession 191 

coefficients (Ford and Williams 2007). Also the dynamic volume, Vdyn, which is defined as the volume of water stored in the 192 

aquifer during depletion of spring discharge is estimated with Eq. 6. 193 

 194 

𝑽𝒅𝒚𝒏 =  
𝑸𝒓𝒐

𝜶
     (6) 195 

 196 

Additionally, Mangin introduced five classes of karst system based on two parameters that are calculated using the recession 197 

parameters: (1) the aquifer regulation capacity, K, defined as ratio between dynamic aquifer volume, Vdyn, and observed volume 198 

of discharge, Vann, through the spring in one hydrological year  (Eq. 7); 199 

 200 
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𝑲 =  
𝑽𝒅𝒚𝒏

𝑽𝒂𝒏𝒏
     (7) 201 

 202 

and (2) infiltration delay, i, given by Eq. 8 which is calculated as the value of the quickflow recession component after two 203 

days (t =2).  204 

 205 

𝒊 =
1−ηt

1+εt
     (8) 206 

 207 

Ford and Williams (2007) provided a detailed review of karst aquifer recession analysis and application of the Mangin model. 208 

 209 

 210 

Figure 1. An illustration of karst spring recession curve showing separation into linear and non-linear components by recession extraction 211 
method and fitting appropriate components of recession analysis model. 212 

2.3 Estimation of recession parameters  213 

Recession parameters can be derived by: (i) considering accumulation of all extracted recession events, a so-called “master 214 

recession”, and (ii) estimating multiple parameter combinations from individual recession event. In a recent study, Jachens et 215 

al., (2020) recommended avoiding the former approach as its estimated parameters do not represent average catchment 216 

responses nor their variability. For this study, the parameters are estimated for individual, automatically extracted  recession 217 

events. That way, we capture variability of spring discharge across individual recharge events (Jachens et al. 2020). As 218 

mentioned in subsection 2.2, in the standard Mangin’s approach, the slowflow component of the recession curve (Eq. 3) is 219 

fitted at first to determine α. Also, the η parameter of the quickflow component (Eq. 4) which is equivalent to 1/ti is 220 

predetermined, meaning that quick flow abruptly ends at ti days, which in reality is actually untrue. Hence, reliable 221 

https://doi.org/10.5194/hess-2021-249
Preprint. Discussion started: 18 May 2021
c© Author(s) 2021. CC BY 4.0 License.



9 

 

determination of ti through the extraction routines (REMs) is vital for estimation of recession parameters. These standard 222 

procedures involve with the application of Mangin’s model result in less degree of freedom for parameter interaction and 223 

unrealistic abrupt ending of quick flow after ti days. To increase the degree of freedom and assess the importance of ti and the 224 

effect of a priori estimated η (1/ti) on the Mangin’s recession model, we introduced three optimization approaches which are 225 

referred to as three different parameters optimisation approaches (POAs) used in this study.  226 

 227 

 M1: This follows the standard approach for applying the Mangin model as described by Padilla et al (1994) and Ford 228 

and Williams (2007). The slowflow component of the recession curve is fitted first with Eq. 3 for ti ≤ t ≤ tn to determine 229 

α value while the quickflow component is asummed to be zero during this period. Afterwards, the second parameter 230 

ε is optimised by fitting the quickflow component with Eq. 5 using a predefined value of η parameter (η =1/ti) for the 231 

event duration between t0 ≤ t < ti. 232 

 233 

 M2: The conventional approach for fitting the Mangin model (M1) does not provide for independent or flexible 234 

estimation of η. The prior definition of η as 1/ti rely on the accuracy of the extraction method to detect the point of 235 

inflexion ti. This however does not give the flexibility to optimised η to a value that could provide better fit for the 236 

model. To provide for more flexible estimation of η, α parameter is determined as in M1, then Eq. 5 is fitted to the 237 

complete segment of recession curve for t0 ≤ t ≤ tn to determine best values of  ε and η parameters. 238 

 239 

 M3: This is a very flexible approach that allows for α, ε, η and Qro values to be fitted numerically. The determination 240 

of ti and Qro does not depend on the extraction method, rather the best fit for the parameters are obtained from 241 

optimisation process. The Mangin model (Eq. 5) is fitted to entire recession curve, which allows for absolute 242 

flexibility of ti and robust parameters interaction during optimisation. With the model calibrated ti (1/η), separating 243 

the quick- and slowflow segments now entirely rely on the optimisation exercise rather than extraction techniques. 244 

 245 

For the optimisation exercise, a non-linear least squares procedure with spring discharge records was used. To avoid having 246 

negative value of conduit drainage contribution when the optimised ti (1/η) is greater than the elapsing t value, the quick flow 247 

component, ψt (Eq. 4), is constrained to a minimum value of zero. Table 2 provides summary of the different optimisation 248 

approaches, parameters that were optimised as well as duration of the optimised corresponding flow component. 249 

 250 

Table 2: Optimised recession parameters for the three different parameters optimisation approaches (POAs) of the Mangin recession analysis 251 

model. 252 

Optim. Optimized Condition Slowflow Quickflow Degree of  
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approach parameters component component freedom 

M1 α, ε η = 1/ti t i ≤ t ≤ t n t 0 ≤ t ≤ t i Less flexible 

M2 α, ε, η η ≠ 1/ti t i ≤ t ≤ t n t 0 ≤ t ≤ t n Intermediate 

M3 α, ε, η, Qro η ≠ 1/ti t 0 ≤ t ≤ t n t 0 ≤ t ≤ t n Very flexible 

 253 

2.4 Comparison and evaluation of REMs and POAs 254 

The three REMs (Vogel, Brutsaert and Aksoy) are combined with the three POAs (M1, M2 and M3) of the recession model 255 

to derive slow  and quick flow recession parameters of selected karst springs for a total of nine possible methods. The mean 256 

and interquartile ranges of the derived parameters are compared among different method pairs and individual recession events. 257 

Models performance is determined by calculating goodness of fit between observed spring recession discharges and ones 258 

simulated with the derived parameters using Kling Gupta Efficiency (KGE) measures (Gupta et al. 2009). The estimated 259 

recession parameters were used to identify the dynamic of the systems according to Mangin’s karst system classification 260 

described in subsection 2.2. The Mangin classification scheme describes the aquifer drainage characteristics, conduit 261 

development and speleological network (Mangin 1975; El-Hakim and Bakalowicz 2007). Therefore, this is use to evaluate the 262 

representativeness of recession parameters estimated for the selected karst springs aquifer systems.  263 

3 Test springs and data 264 

The REMs and POAs were tested using three karst springs; Lehnbachquellen, Saivu and Qachquoch located in Austria, 265 

Switzerland and Lebanon respectively (Figure 2). The selection of these springs were based on geographical spread which 266 

covers different climate and hydrological settings, availability of discharge hydrograph in high resolution as well as literature 267 

reference on hydrological characterisation of aquifer systems drained by the spring. Daily and sub-daily spring discharge time 268 

series of the selected springs were obtained from WoKaS database (Olarinoye et al. 2020). Important characteristics of the 269 

spring hydrographs as well as the catchments in which they are sited are presented in (Table 3). The springs are sited in 270 

catchments distinguished by different climate conditions according to the Köppen-Gieger classification (Beck et al. 2018). 271 

Lehnbachquellen is sited in snow-dominated, Saivu in humid and Qachquoch is in the Mediterranean catchment.  The spring 272 

discharge time series measured at a uniform time-step for each spring span between 3 and 13 years. All discharge time series 273 

were aggregated to daily temporal resolution and missing data values which were only found (<0.01%) in Lehnbachquellen 274 

spring discharge data were excluded.  275 
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 276 

Figure 2. Map showing locations of the three test springs obtained from the WoKaS database and different Köppen-Geiger hydroclimatic 277 

classes. 278 

Table 3. Summary of test springs site properties and characteristics of spring discharge hydrographs. 279 

Properties Lehnbachquellen Saivu Qachquoch 

Climate description Snow-dominated Humid Mediterranean 

Spring elevation (masl) 1293 371 65 

Köppen-Geiger Cold and no dry season Cold and humid Mediterranean, hot summer 

Temporal res. Daily Hourly Sub-hourly 

Length 1999-2012 1993-1995 2014-2018 

Missing data <0.01% 0 0 

Mean discharge (m3/s) 0.06 0.29 1.08 

Mean precipitation (mm/y) 1396 1201 523 

 280 

4 Results 281 

4.1 Extracted recessions and performance of POAs 282 

The adapted recession extraction methods adequately identify karst spring conduit and matrix flow components and the 283 

parameters obtained with the fitted Mangin’s models produce a well satisfactory recession simulation. The combination of the 284 

three REMs (Vogel, Brutsaert and Aksoy) and three POAs (M1, M2 and M3) led to nine recession methods that were used for 285 

analysing the recession events of the three karst spring hydrographs. Only recession events >= 7 days period were considered 286 

for analysis. For each spring hydrograph, a different number of recession events are extracted by the REMs. As shown on 287 

Table 4, Vogel has the highest number of extracted recession events across all springs, followed by Brutsaert and Aksoy shows  288 
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least ability to capture recession events of the observed spring discharges. With this, the REMs can be simply classified as 289 

permissive (Vogel), less permissive (Brutsaert) and restrictive (Aksoy). 290 

 291 

Table 4: Recession events period extracted by the REMs for the three spring discharge hydrograph 292 

   Number of extracted 

recession events 

Spring name Location Catchment 

description 

Vogel Brutsaert Aksoy 

Lehnbachquellen Austria Snow 

dominated 

162 145 136 

Saivu Switzerland Humid 30 28 13 

Qachquoch Lebanon Mediterranean 67 63 49 

 293 

Figure 3 shows how the different REMs and POAs combinations performed in simulating spring discharge during extracted 294 

recession events using KGE measures. With exclusion of the outliers, a high KGE values were achieved across all 295 

combinations, ranging between 0.72 and 1.00. More than half of all simulated events across the three springs produce a KGE 296 

>0.9 for all REM-POA pairs. However, the lowest performance in all three springs is related to POAs combined with Vogel 297 

extraction method. While there is no vivid observable pattern between the extraction methods (REMs) and recession model 298 

performance, the parameters optimisation approaches (POAs) show otherwise. A clear systematic order for the KGE median 299 

is found within the POAs: M1 < M2 < M3. This is more noticeable in the humid and Mediterranean springs, except for the 300 

Vogel-M2 combination in the humid spring that is not in the systematic order. 301 

 302 

 303 

 304 
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Figure 3: Boxplot of KGE measures between observed and simulated recession events based on parameters derived from the different REMs 305 

and POAs. The boxplots represent the interquartile ranges of KGE with the median shown in white lines and outliers marked in coloured 306 

points.  307 

4.2 Variability of recession parameters among different REM-POA combinations 308 

Figure 4 shows the results of optimised recession parameters values with the different REM-POA pairs for each spring. These 309 

parameter sets are combinations of α, η and ε that produced the best simulation fit, that is highest KGE value for each recession 310 

event. Recession curve fitting based on the individual segment led to a large number of parameter combinations with the nine 311 

possible REM-POA pairs. Modification of REMs and POAs produce complex parameter interaction, to simplify the results, 312 

two categories of parameters were identified; (1) more consistent and less variable parameter (α); and (2) inconsistent 313 

parameter (η and ε) with higher variability. However, this does not imply that, a parameter always falls into defined category 314 

for all pairs of REM and POA. 315 

The results in Figure 4 shows that POAs do not have a noticeable influence on the estimation of recession coefficients α. 316 

However, the REM has some impacts, which is only noticeable for Saivu and Qachquoch springs. For these springs, estimation 317 

associated with Aksoy extraction method shows less variability and gives a lower value of α. Results obtained from POAs 318 

paired Vogel and Brutsaert are within similar ranges but are slightly higher. Generally, there is relatively high consistency 319 

among REM-POA pairs in estimating α for each spring, as shown by the median and mean values. In fact, there is much higher 320 

variability in estimated α among recession events than the different REM-POA combinations. However, there is much higher 321 

consistency and lesser variability in α estimated for Lehnbachquellen compare to the other two spring locations. Also, when 322 

compare to other parameters, there is often lesser variability in estimated α among extracted events and parameters optimisation 323 

approaches.  324 

 325 

Both REM and POA have significant influence on the estimated values of infiltration rate, η, and curve concavity, ε, 326 

parameters. Both parameters show relatively high inconsistency among the methods as well as instability within recession 327 

events. The most visible pattern from Figure 4 is that increasing degree of parameter freedom during optimisation usually 328 

result to higher estimates of η and vice-versa for parameter ε. The values of η parameter span one order of magnitude for REMs 329 

and POAs combinations across all spring locations. From the median and mean values, low estimates of η are related to pairing 330 

permissive extraction method (Vogel) with less-flexible optimisation approach (M1). Conversely, pairing the permissive 331 

extraction method with M2 and M3 which are more flexible optimisation approaches led to higher infiltration rates. Notably, 332 

a stationarity of η around 0.2d-1 is seen across all springs with Brutsaert-M1 pairs. Unexpectedly, estimation of η with the 333 

restrictive extraction method (Aksoy) generally led to higher variability especially when combined with the less-flexible 334 

optimisation approach.  335 

 336 
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Estimation of curve concavity parameter, ε, with the different REM-POA combinations shows parameter behaviour opposite 337 

to that seen in the infiltration rate parameter. Pairing REMs with less-flexible optimisation procedure (M1) gives higher 338 

estimate of ε, yet the median and mean values derived from REM-POA pairs for each spring show some consistency. This 339 

consistency is higher for REMs paired with M2 and M3 optimisation approaches. While there are some coherency within 340 

REM-POA combinations, there is high variability in ε estimated for individual recession events. However, a significant 341 

reduction in the variability among recession events is seen with increasing restrictiveness of REM and more flexibility of POA. 342 

Overall, permissive REM and less-flexible POA result in slightly higher values and more variability in ε parameter estimates.  343 

 344 

 345 

 346 

Figure 4. Distribution and variability of recession parameters α, η and ε (y-axis of ε in log scale, all units in day-1) obtained by 347 

the combination of REM (Vogel, Brutsaert and Aksoy) and POA (M1, M2 and M3) for the three springs located in the different 348 
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defined climate catchments. The boxplots represent the interquartile range, whisker lines correspond to the most extreme 349 

parameter values and outliers marked as circle with corresponding box colour. 350 

 351 

4.3 Aquifer characterization 352 

To evaluate the overall representativeness of estimated recession parameters based on the modified REMs and different POAs 353 

for the selected karst spring systems, we determined the drainage properties of the spring’s aquifer using the parameters derived 354 

from the individual recession event. As described in subsection 2.2, retardation between infiltration and output defined by 355 

infiltration delay parameter, i and aquifer regulation power, K, were calculated for individual recession event. Figure 5 shows 356 

the grouped mean aquifer classifications as well as their standard deviations based on the per event K and i values, using the 357 

nine possible REM-POA combinations. Event-based estimated K and i values and their variability with respect to recession 358 

analysis methods are provided in the appendix (Figure A1). As shown by the standard deviation bounds of the drainage 359 

properties derived from individual recession segments in Figure 5, there is strong overlapping of calculated drainage properties 360 

and aquifer classes. However, with the calculated mean values of K and i, the three springs are identified as a distinct aquifer 361 

system. The aquifer systems are mostly distinguishable by their ability to store and regulate groundwater outflow through the 362 

springs. 363 

 364 

With the exception of Qachquoch spring, there is high coherency for the mean K determined by the possible combinations of 365 

REM and POA for each springs. Conversely, methodological differences in selected REM and POA result in large variations 366 

in the estimated mean infiltration delay, i, among the springs. Lehnbachquellen spring located in snow-dominated catchment 367 

has a unanimous mean K of ca. 0.11 year and i values ranging from 0 to 0.4. The range covered by i is wide, yet most of the 368 

REM-POA combinations categorise the karst aquifer drained by Lehnbachquellen as speleologically well developed (class II) 369 

system. The only exception found was the Vogel-M1 paring, in which the system is ranked as fairly karstified (class III) (see 370 

Figure A1). Similarly, mean K value for the Saivu spring is also consistent across different extraction and parameter 371 

optimisation methods. The estimated mean K for the spring’s karst system is 0.04 years while the mean infiltration delay, i, 372 

ranges between 0 and ca. 0.35. Unlike Lehnbachquellen, there is no predominant classification established by the different 373 

REM-POA combinations. The Saivu karst spring system is placed between very well developed (class I) and fairly karstified 374 

systems (class III). In contrast to the other two springs, there is no unanimous agreement between the combinations of REM 375 

and POA in the estimation of the mean regulation capacity, K, of the Qachquoch spring system. Extraction with Vogel and 376 

Brutsaert methods combined with M3 parameterisation procedure result in a significant departure from the mean K values 377 

calculated by other REM-POA pairs. The capacity of the Qachquoch karst spring’s aquifer to withhold water within the system 378 

ranges between 0.06 and 0.11 years (range of mean K values). But in a similar trend to other springs, wide dispersion is also 379 
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seen in the estimated mean infiltration delay, i, values which ranges from 0 to 0.4. Again, a decisive system class cannot be 380 

assigned, although most of the methods combination described the system as fairly karstified with retarded infiltration (class 381 

III). Classification of the aquifer system based on drainage characteristics (K and i) calculated by Brutsaert-M2 and Aksoy-382 

M1 pairs categorized it as well-developed (class I) system (see Figure A1).  383 

 384 

 385 

 386 

Figure 5. Karst aquifer type classification based on mean values of K and i, calculated with recession parameters estimated by the different 387 

combinations of REM and POA. Distributions of mean K and i derived from all method combinations for each spring are represented by 388 

coloured areas; areas covered by unfilled boxes are the standard deviations. Mean and standard deviations K and i from different pairs of 389 

REM and POA for each spring are plotted in Fig. A1 of the appendix.  390 

5 Discussion 391 

5.1 Quality of extracted recessions  392 

With the modification of the traditional REMs, we are able to establish a completely objective approach to distinguish between 393 

slow and quick flow recession components. Furthermore, optimisation approaches (POAs) with more flexibility show better 394 

improvement over the conventional parametrisation procedure. The REMs tested uses different statistical indices to scrutinise 395 

genuine baseflow records, hence they have different level of tolerance. The ability of the extraction methods to identify 396 

recession periods from hydrograph time series depend on the level of their restrictiveness. Vogel extraction method defined 397 

by a 3-day moving average to smoothen the hydrograph and also allows for 30% increase in subsequent flowrates is more 398 

permissive than Brutsaert and Aksoy methods that strictly enforce dQ/dt < 0. Hence, more recession events are extracted by 399 

Vogel method. Study by Stoelzle et al. (2013) also showed the Vogel procedure to be more permissive, as it was able extract 400 

almost 50% more events than Brutsaert. Although main recession selection condition for Brutsaert and Aksoy method is 401 
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determined by decreasing dQ/dt, constraining real baseflow recessions to discharge data points with less than 10% (CV ≤ 0.1) 402 

deviations makes the Aksoy more restrictive than Brutsaert method.  403 

 404 

Generally, all combinations of REM-POA performed acceptably well, increasing restrictiveness of extraction method gave 405 

improved model performance. Even though restrictiveness led to better performance, this should not be a basis to out-rightly 406 

accept restrictive REM over less-restrictive one. For instance, standard removal of 3 or 4 days by Brutsaert method as 407 

stormflow-influenced period is speculative and consequently led to unrealistic stationarity in conduit flow duration, ti, (ti =1/η), 408 

yet it performed better than permissive Vogel method. Although, problem of unrealistic ti  estimation inherent from Brutsaert 409 

was eliminated and general improvement in models performance was achieved by increasing parameters flexibility during 410 

optimisation. Overall, the adapted REMs and the introduced three POAs provide range of results that adequately represents 411 

the karst systems. This suggests that the modified REMs are well suited for application to karst spring recession analysis. 412 

While all REM-POA pairs are good from the model performance perspective, it will be misleading to define best pair of REM-413 

POA base on this, without first evaluating if the estimated parameters are realistic. However, we strongly suggests avoiding 414 

the Brutsaert-M1 pair for karst recession analysis due to its stationarity problem.  415 

5.2 Effects of different REM-POA combinations on extracted recession parameters  416 

Methodological choices of REMs and POAs combinations have great impacts on the estimated recession parameters. The 417 

extent to which the parameters are influenced by the methods largely varies between the slow flow and quick flow recession 418 

parameters. There is relatively higher consistency and better stability among all REM-POA pairs in estimating slow flow 419 

recession parameter that describe the drainage characteristics of the matrix block within the phreatic zone. As observed by few 420 

other studies (Stoelzle et al. 2013; Santos et al. 2019) slow flow recession coefficient is more influenced by the extraction 421 

method used than the parameterisation approach, which only marginally impacts the estimated parameter. The heterogeneity 422 

of karst system results in different conduit processes being activated during recharge events, this is reflected in observed higher 423 

variability of quick flow parameters that represent the conduit drainage system. Unlike slow flow parameter, both REM and 424 

POA greatly impacted the estimation of parameters representing the conduit drainage systems. 425 

 426 

More variability in estimated recession parameters is largely associated with analysis involving permissive extraction method, 427 

though increasing flexibility of model parameterisation often reduced the variability. Such large variability was also reported 428 

by Santos et al. (2019) who suggested avoiding combining the permissive extraction method with individual recession segment 429 

analysis to estimate recession parameters. Aside showing higher variability, permissive recession extraction tends to produce 430 

higher estimate of slow flow recession coefficients. However, as seen from Lehnbachquellen spring in snow-dominated 431 

catchment where outflow is generously sustained throughout the year without seasonality of baseflow regimes, all REMs 432 
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produced very similar estimate of baseflow coefficients with narrow variability. The more variability and over-estimation of 433 

slow flow recession coefficients by permissive and less-permissive REMs (Vogel and Brutsaert) as early mentioned is 434 

specifically noticeable only for springs in the humid or mediterranean catchments. This observation suggests that the impact 435 

of methodological difference of various REMs associated with estimated baseflow parameters might only be pronounced in 436 

catchments with hydrological seasonality.  437 

 438 

Although the combination of REM and POA affects the estimation of conduit drainage characteristics, the effect of the POA 439 

tends to be more pronounced. Increasing degree of parameter freedom during optimisation with the different POAs 440 

formulations often result to significant reduction in parameters variability. This is also accompanied by either over- or under-441 

estimation of conduit drainage parameters. The more flexible parameterisation approaches (M2 and M3) generally lead to 442 

higher the infiltration rates through the unsaturated zone. Infiltration rate is predetermined (η  = 1/ti)  in the original 443 

parameterisation procedure of Mangin’s model (M1) which restricts fitting the quick flow recession curve only to the 444 

optimisation of the regulating capacity, ε. To compensate the inflexibility due to predetermined infiltration rate, the regulation 445 

capacities of the reservoir estimated with M1 parameterisation procedure are higher and more varied. By means of excluding 446 

a fixed number of days (3-4) as influenced stage of recession, Brutsaert paired with M1 also leads to stationarity in the 447 

estimated infiltration rates. This makes it an unsuitable combination, especially with long recession period. Santos et al. (2019) 448 

found analysis with Brutsaert method to be more robust and appropriate for short recession samples. 449 

Despite the impacts of methodological choices on the uncertainty of estimated recession parameters, variability among events 450 

exceed the variability among methods. These high variabilities are attributed to different lengths of extracted recession events, 451 

differences in karstic processes such as recharge and infiltration that are activated within the unsaturated zone for each event. 452 

Even though karst systems are very heterogeneous and it is important to capture the impacts of the variable karstic processes 453 

through analysis of individual recession segment, the high uncertainty among events make it difficult to define set of 454 

representative recession parameters. This uncertainty found with per event analysis can be reduced by considering different 455 

categories of recession lengths that represent short and long recession periods; estimated parameters can be compared to assess 456 

the system’s dynamics. Another way of coping with this problem is to consider master recession curve analysis which is often 457 

criticize for its inability to adequately represent storage variability (Kresic and Bonacci 2010; Gregor and Malík 2012; Kovacs 458 

2021). However, since per event analysis is useful for better understanding of the system’s dynamic, defining a systematic 459 

approach to quantify parameters uncertainty will help to increase the confidence of individual recession segment analysis.  460 

5.3 How realistic are adapted REM-POA for karst system analysis? 461 

Interestingly, there is a strong coherence among possible pairs of REM and POA in determining the average regulation capacity 462 

of the aquifers drained by the springs. The determination of the dynamic volume used in calculating the regulation capacity is 463 

https://doi.org/10.5194/hess-2021-249
Preprint. Discussion started: 18 May 2021
c© Author(s) 2021. CC BY 4.0 License.



19 

 

based on baseflow recession coefficients (Eq. 6). However, the effect of the extraction methods on baseflow recession 464 

coefficient (see previous sub-section) was not reflected in the determination of dynamic volume and regulation power. This 465 

effect that could have been transmitted was cancelled by different initial baseflow component, Qro,estimated by the methods. 466 

In one study  (Grasso & Jeannin 1994), the authors found regulation power, K, to be more stable for various years and events. 467 

These findings do not agree with our analysis, the outcomes of which show a large variability among K for different events, 468 

most significantly in the snow-dominated catchment (Figure A1 in Appendix). Regulation power is analogous to memory 469 

effect, periodic water release from an external snow storage that is not captured within the saturated zone in real time makes 470 

K to fluctuate more in snow-dominated catchment.  471 

 472 

Infiltration delay, i, is strongly dependent on recharge type contribution as well as catchment size (Jeannin and Sauter 1998). 473 

Pairing extraction method that does not explicitly separately the spring discharge slow and fast recharge path (Brutsaert) with 474 

less flexible parameterisation procedure (M1) result in overestimation of infiltration delay. Aside this obvious bias with 475 

Brutsaert-M1 pairs, regardless of what extraction method (permissive or restrictive) is paired with parametrisation procedure, 476 

the complex interplay of REM and POA result in a compensation phenomenon; whereby infiltration rate, η, is compensated 477 

by recession concavity parameter, ε, and vice versa. Since the infiltration delay, is defined by these parameters, it is difficult 478 

to explicitly infer specific effect of REM and POA on infiltration delay. 479 

 480 

The northern Alps karst system where the Lehnbachquellen spring is located has been defined as well karstified highly 481 

permeable unit interlayered with less permeable Flysch formation (Goldscheider 2005; Chen et al. 2018). This is very 482 

consistent with the classification we achieved (class II and III). Perrin, Jeannin, & Zwahlen (2003) described Saivu spring 483 

system as a well-developed karstic network, majority of the methods pair used in this study place this spring in class 1, therefore 484 

coherently agreeing with the authors description. From our analysis, Qachquoch spring is classified as medium karstified 485 

system by most method combinations. However recent study by Dubois et al. (2020) categorise the system as poorly karstified 486 

with a very large regulation capacity. Meanwhile, if we also consider two standard deviation distances from the calculate mean 487 

K values, a regulation capacity >0.5 will be obtained and the system will be equally classified as poorly karstified by REM-488 

POA pairs used. 489 

 490 

Given that existing common karst spring recession extraction method involves manual procedure and subjectively determined 491 

duration of conduit infiltration, alternative faster, automated and objective approach is very useful. From our analysis, resulting 492 

parameters of extracted recession segments are within reasonable ranges and derived systems classification correspond to those 493 

found in literatures. The good performance recorded between simulated and observed flowrates during recession events attest 494 

to the potential transferability of traditional extraction methods to karst systems. However, this good performance does not 495 
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necessarily translate to reliable parameter estimates. It is therefore important to choose REM methods that gives reasonable 496 

parameters especially when paired with a less flexible optimisation approach. Furthermore, with prior knowledge of the spring 497 

system, parameters ranges can be reasonably constrained during optimisation to achieve a more representative optimum 498 

parameters. 499 

6 Conclusions 500 

The application of karst spring hydrographs recession analysis is very broad, including estimation of storage capacity (Fleury 501 

et al. 2007), describing discharge of unsaturated zone  (Amit et al. 2002; Mudarra and Andreo 2011) as well as systems 502 

classification (El-Hakim and Bakalowicz 2007). Most often manual recession extraction is used and the high subjectivity of 503 

the approach introduces bias to estimated parameters. For the first time in literatures, this study explores the applicability of 504 

automated traditional recession extraction methods (REMs) originally developed for slow flow (baseflow) recession by 505 

adapting them to also identify quick flow flow recessions. We fit individual extracted recession segments with Mangin's 506 

recession model to determine the conduit and matrix drainages recession characteristics. We introduce new parameters 507 

optimisation approaches (POAs) different from the conventional procedure to increase degree of freedom of parameter 508 

interaction. 509 

 510 

The three traditional REMs adapted in this study performed differently, depending on how permissive or constraining the 511 

method was, more or less recession periods were identified. The interaction between REMs and POAs is complex and has 512 

various degree of impacts on the derived recession parameters. We found that higher variability is associated with permissive 513 

extraction method but this variability is largely reduced with an increased degree of freedom during optimisation. Unlike with 514 

baseflow conditions, where estimated recession parameters are a bit consistent among REMs and POAs, there is high 515 

variability for the estimated conduit recession parameter. However, parameters variability among individual recession events 516 

exceed the variability resulting from different combinations of REM and POA. The original REMs were developed based on 517 

specific catchment features that control recession (Stoelzle et al. 2013), so they quantify recession extraction differently. As 518 

suggested in several recession studies (Stoelzle et al. 2013; Santos et al. 2019) and also done in this study, we recommend 519 

trying different combinations of REMs-POAs for more robust recession analysis.  520 

 521 

The adapted traditional REMs tested produced reasonable results with regard performance and derived parameters. Application 522 

of the methods is quick and fully objective, therefore they proved to be a good alternative to manual recession extraction. This 523 

will be useful for the comparative analysis of karst spring systems using large number of hydrographs which would otherwise 524 

be a difficult exercise to execute. Although analysis with individual recession events is highly uncertain, we provide alternative 525 

for reducing or quantifying the uncertainties to improve the robustness of the analysis.  526 
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Appendix 656 

 657 

Table A1. Spearman’s ranked correlation coefficients, ρ, between the recession parameters and length of extracted recession 658 

events.  659 
 

vog_M1 vog_M2 vog_M3 brut_M1 brut_M2 brut_M3 akw_M1 akw_M2 akw_M3 

? -0.19673 -0.19673 -0.08805 -0.0918 -0.09191 -0.1215 -0.05995 -0.06002 0.045158 

? -0.9722 -0.55059 -0.31179 -0.14328 -0.47121 -0.29442 -0.62963 -0.63559 -0.35843 

? 0.04843 0.05108 -0.0257 -0.16752 -0.0788 -0.03305 0.106504 -0.10938 -0.08331 

 660 

 661 

 662 

 663 

 664 

Figure A1. Karst aquifer classification according to the different combinations of REMs and POAs. The shapes circle, triangle and square 665 
represents (Vogel, Brutsaert and Aksoy) extraction methods. Different colour fills relate to parameterisation procedures; solid colour for 666 
M1, transparent for M2 and no-fill for M3. 667 
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